Systems Engineering Applied to Fielded Systems

Dr. Larry H. Crow
IIT Research Institute
Huntsville, AL

5 th Annual Systems Engineering Conference
Tampa, FL
October 21-24, 2002

Outline

- Problem
- Background on Methodology
- Application of Methodology to solve problem
- Examples
- Conclusion

Problem

Problems That are Receiving Increased Attention

- Cost to Maintain Fleet of Aircraft
- Maintaining Mission Reliability as System Ages
- Determine Optimum Repair and Overhaul Strategy to Minimize Life Cycle Cost
- Determining Corrective Actions for Fielded Systems to Upgrade Reliability and Reduce Cost
- Determining the Wear out Profile for Fielded System as the System Ages

RELIABILITY IN DESIGN AND TEST, AND CUSTOMER USE

Time

Problem

- Systems Engineering Generally Addresses Reliability, Reliability Growth, Spares, and Overhaul Policies in the Design Phase
- The Overhaul Policies Set in Design Phase May Not Be Optimum
- Actual Field Failure Data and Cost Information Can Help Define More Optimum Policies
- Also, After the System Is Fielded Reliability Information May Uncover Deficiencies, and Opportunities for Reliability Growth to Reduce Costs
- Technology Improvements for Reliability May Also Reduce Failures- and Repair and Overhaul Costs

SE Methodologies To Reduce Fleet Costs

Two Methods to Help Reduce Costs

- Overhaul Policy
 - -For a System That Is Overhauled "What Is the Optimum Overhaul Time That Will Minimize Total Life Cycle Cost?—Economical Life
 - Useful Life Considers the Tradeoff Between
 Economic Life and Maintaining a Minimum Mission
 Reliability Capability Between Overhauls
- Reliability Growth
 - What Is the Improvement in the System Reliability Resulting From Proposed Corrective Actions
 - What Is the Fleet Cost Savings If These Corrective Actions Are Implemented

CONCEPT OF MINIMAL REPAIR

- Minimal Repair
- The Repair of a Single Failure Mode Upon Failure Does Not Greatly Improve the System Reliability From What It Was Just Before Failure
- Nonhomogeneous Poisson Process (NHPP) Model
- Failure Intensity

u(t)Dt - The probability of system failure in (t,t+Dt) regardless of whether or not

the system has failed in (0,t)

POWER LAW POISSON PROCESS

- Non-homogeneous Poisson Process Model
- Failure Intensity

$$U(t) = 1 bT^{b-1}$$

T>0

1,b PARAMETERS

- Can Estimate 1, b From Data
- Crow (1974) Introduced Power Law Model and Estimated Procedures for Multiple Systems

$$\beta=1$$

$$\beta$$
>1

eliability Improvement

Constant

Wear out

GENERAL EQUATIONS

Systems in Fleet Have Repeated Overhaul Cycles

ML Estimates

$$\hat{I} = \frac{\sum_{q=1}^{K} N_q}{\sum_{q=1}^{K} \left(T_q^{\hat{b}}\right)}$$

$$\hat{b} = \frac{\sum_{q=1}^{N_q} N_q}{\hat{I} \sum_{q=1}^{K} \left[T_q^{\hat{b}} Ln(T_q) \right] - \sum_{q=1}^{K} \sum_{i=1}^{N_q} Ln(X_{iq})}$$

9

EXAMPLE-Life Cycle Cost Model

Nominal Overhaul Time T = 1500

System	Failure Times	OH Time
1	68, 1137,1167	1268
2	682, 744, 831	1300
3	845	1593
4	263, 399	1421
5		1574
6		1415
7	598	1290
8		1556
9		1426
10	730	1124
11		1568

Optimum Overhaul Policy

- Parameter Estimates
- l = 0.000002558 b = 1.774
- $C_1 = $29,860$ Cost of Repair
- C_2 = \$100,000 Cost of Overhaul
- Optimum Overhaul Time to Minimize Life Cycle Cost

$$T_0 = \begin{bmatrix} C_2 \\ I \text{ (b-1)}C_1 \end{bmatrix}$$
 T₀=3237 hours

Optimum Overhaul Policy Cost Savings

- Current Overhaul Time 1500 Hours
- 3 hour Mission Reliability Requirement 0.995
- R(1500) = 0.996 Cost/hr = \$88.56
- R(3237) = 0.993 Cost/hr = \$70.65
- R(2060) = 0.995 Cost/hr = \$76.66
- Cost Savings per Hour (2060) =\$11.90
- 79,000 Fleet Hours per Year
- Annual Cost Savings(2060) = \$940,000.

RELIABILITY PROJECTION MODEL

Crow (1983)

RELIABILITY PROJECTION MODEL

Type A Modes

All Modes Such That If Seen During Test No Corrective Action Will Be Taken. This Accounts for All Modes for Which It Is Not Cost-effective to Attempt to Increase the Reliability by a Design Change.

Type B Modes

All Modes Such That If Seen a Design Change, or Fix, Will Be Attempted

 d – Average Effectiveness Factor - the Fraction Decrease in Failure Rate After a Corrective Action (Typical d= .70)

RELIABILITY PROJECTION

Application to In-Service Reliability Growth

EXAMPLE

Sys	Cycle	Ni	Failures
1	1396	1	1396
2	4497	1	4497
3	525	1	525
4	1232	1	1232
5	227	1	227
6	135	1	135
7	19	1	19
8	812	1	812
9	2024	1	2024
10	943	2	316,943
11	60	1	60
12	4234	2	4233, 4234
13	2527	2	1877, 2527
14	2105	2	2074, 2105

For Projection Model Convert Failure Data to Accumulated Operating Times

$$Y_1 = 1396$$

$$Y_2 = 5893$$

$$Y_3 = 6418$$

Each Failure Corresponds
To a Failure Mode that
will not be corrected (A
Mode) Or
will be corrected (B Mode)

$$Y_{37} = 52110$$

T = 52110 Total
Accumulated Operating
On All 27 Systems in the Sample

EXAMPLE

Ordered Failure Data and Type A and Distinct Type B Modes (K = 27 Systems, N = 37 Failures, T = 52110)

Category A and B Classification										
1396	5893	6418	7650	7877	8012	8031	8843	10867		
B1	B2	Α	B3	B4	B2	B2	B1	B1		
11183	11810	11870	1613	39 1	6104	18178	18677	20751		
B5	A	B1	B2		B6	B7	B2	B4		
20772	25815	26361	2639	92 2	6845	30477	31500	31661		
B2	B1	B1	Α		B8	B1	Α	B 3		
31697	36428	40223	4080	03 4	2656	42724	44554	45795		
B2	B1	B1	B9		B1	B10	B1	B11		
46666	48368	51924	52110							
B12	B1	B13	B2							

EXAMPLE

 Can Now Apply Reliability Projection Model to In-Service Reliability Growth

$$I_{s} = \frac{37}{52110}$$

Average MTBF = 1408

Before Corrective Actions

$$EF d = .4$$

$$_{\rm p} = .00053$$
 New Average MTBF = 1877

After Corrective Actions

RELIABILITY PROJECTION

COST SAVINGS

- Average of 440,000 Fleet Hours Per Year
- 74 % of Failures Result in Overhaul
- Current (1408) Have Average of 231 Overhauls
 Per Year
- Projected(1877) Will Have Average of 173
 Overhauls Per Year
- \$60,000 Cost Per Overhaul
- Estimated Annual Cost Savings = \$3,480,000.

Conclusions

- Can Apply Systems Engineering Reliability Methods Used in Design to Reduce In-Service Fleet Costs
- Methods are Easy to Apply
- Methods Discussed Are Successfully Being Used by DoD and Industry to Address Reliability and Fleet Costs.
- Have Presented Examples Illustrating Applications